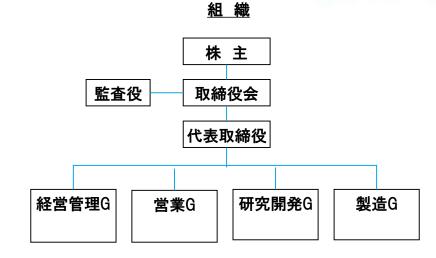
2023年 12月 SSM Confidential

仙台スマートマシーンズ会社紹介

http://www.ssmcoltd.co.jp/

一電池レス、メンテナンスフリーマイクロ発電機および それを用いたloT機器の開発、製造、販売一

> 新たな価値を生み出すサービス構築のために新しいマイクロデバイス (マイクロ発電機)を世界に提供し、SDGs実現に貢献します。


> > 代表取締役 CEO 桑野 博喜

SSM組織概要

社名	仙台スマートマシーンズ株式会社 (略称:SSM)							
設立日	2016年 5月24日							
所在地	仙台市青葉区荒巻青葉6-6-40 T-Biz 407号							
資本金	1,000万円							
株主	菊池製作所 THVP(東北大学ベンチャーパートナーズ) 桑野 博喜 高間舘 千春 安藤 克己							
役員構成	代表取締役桑野博喜 取 締 役 高山 洋佑 取 締 役 菊池 功(社外·非常勤) 監 査 役 乙川 直隆(社外·非常勤)							
従業員数	5名(2023年10月現在)							

代表取締役 桑野 博喜

1977年 東北大学大学院機械工学第二専攻修了 日本電信電話公社入社 1987年 米国Cornell Univ.客員研究員 1997年 NTT技術部 担当部長 2000年 NTT研究所 PM、担当部長

2014年 未来科学技術共同研究センター 教授兼任

2016年 仙台スマートマシーンズ社創設

2003年 東北大学大学院工学研究科 教授

取締役 高山 洋佑

2007年 東北大学大学院ナノメカニクス専攻修了 シャープ入社

2016年 シャープ退社

マツダ入社 中小企業診断士 登録

2019年 マツダ退社

2019年 仙台スマートマシーンズ入社

SSM経営理念と当社の沿革

経営理念

新たな価値を生み出すサービス構築のために新しいデバイス(マイクロ発電機) を世の中に提供しIoTおよびSDGs実現に貢献します。

経緯 1977年:NTT研究所にてMEMSマイクロデバイスの研究に取組む

1993年:「センサ・コミュニケーション・ソサエティ構想」発表。センサーをネットワーク化した

システムを社会基盤とする事を提唱。そのための研究開発を提案。

2003年:東北大学教授就任、MEMS研究を継続

2006年:科研費(学術創生)「ナノエネルギーシステム創生の研究」採択、代表

2010年: NEDO・ナノテクPJ「非鉛圧電材料によるマイクロ振動発電デバイスの研究開発」採択、代表

2012年:経産省・IT融合プロジェクトに採択、代表

2013年:東北大学事業育成学内支援プログラムであるBIP *1採択、代表 *1: Business Incubation Program

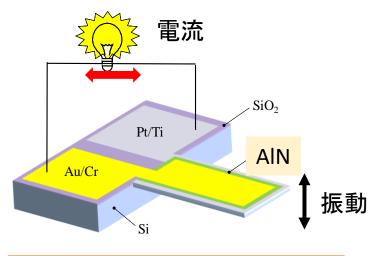
2014年:自動車、インフラ関係への適用を目指し共同研究を開始

2016年:合同会社仙台スマートマシーンズ設立(代表社員桑野)

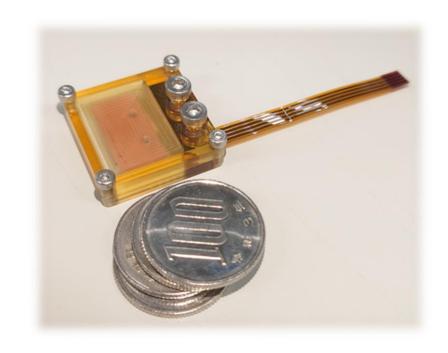
仙台スマートマシーンズ㈱に組織変更、東北大学ベンチャーパートナーズ㈱より出資

2018年:ネプコンジャパン/スマート工場展示会に出展

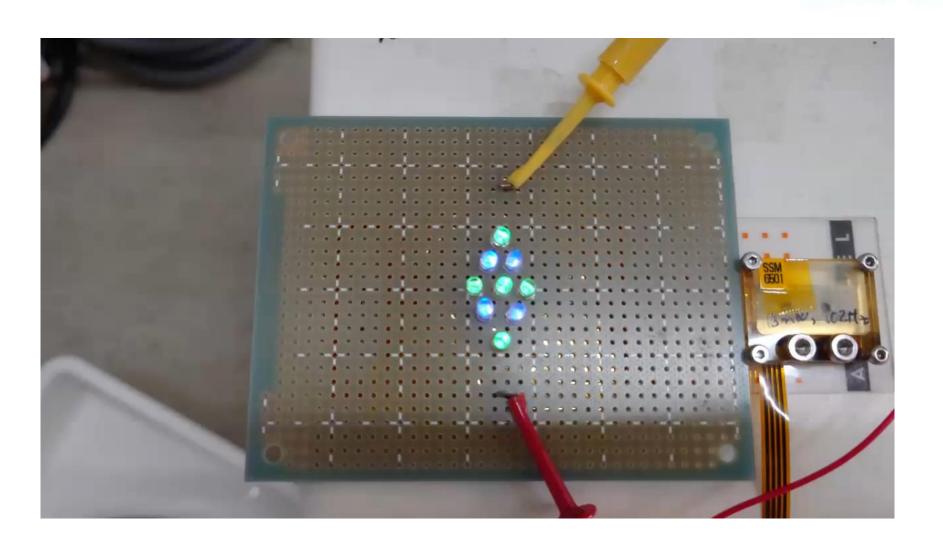
東北大学ベンチャーパートナーズ㈱より追加出資を受入れ


2019年 経産省戦略的基盤技術高度化支援事業(サポイン)採択、代表

2019年: 菊池製作所(株)より追加出資受け入れ


2020年: 宮城県新規参入・新産業創出等支援事業費補助金採択

SSM競争力の源泉ー振動利用マイクロ発電機



振動を利用するマイクロ発電デバイス

SSM競争力の源泉ー振動利用マイクロ発電機

具体的な省エネルギー効果(1)

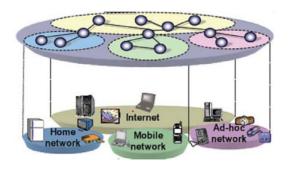
1. 電池の代替品としての省エネ効果 劣化診断、状況把握用センサーの駆動源として

Liイオン電池のLCA(電力に限って考察)

総合効率η = (ライフに渡り出力する電力)

÷(製造時、使用時、充電時に要した電力)

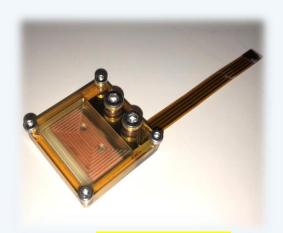
- ·二次電池の場合(充電を繰り返し10年間使用と仮定): η=74%
- SSMマイクロ発電機の場合(10年間使用と仮定): η = 1.75x10⁴% ⇒ Li電池の286倍の効率!


世界のLiイオン電池の総電力供給量1100GWh(2022年)の1/4を弊社品に置き換えたとすると・・・

(371.6-1.3)=370.3GWの節電となる!

具体的な省エネルギー効果(2)

2. SSMエナジーハーベスタ使用センサネットワークシステム による工場等の電力使用量の削減


・工場内でのBEMS構築により表示系BEMS,制御系BEMS合わせて 5.8%~17.9%の省エネ効果(情報処理学会、峰野、水野)振動部に幣社エナジーハーベスタ使用により市販電力が不要となるので、さらなる省エネ効果実現可

・工作機械の消費電力を準備工程、加工工程別に 左図に示す。準備工程(暖気運転)に多大な消費 電力が必要である。弊社エナジーハーベスタを用いた 振動、温度センサシステムにより暖気運転時間を短く することが可能であり、大幅な省エネ効果が見込める。

開発した環境発電デバイスと電池、商用電源との比較

- 2 超省エネ
- 交換不要
- ◯ 省スペース
- **じ** 防爆性

VS

LCA(Life Cycle Assesment) で環境に負荷

交換、充電、メンテナンス要

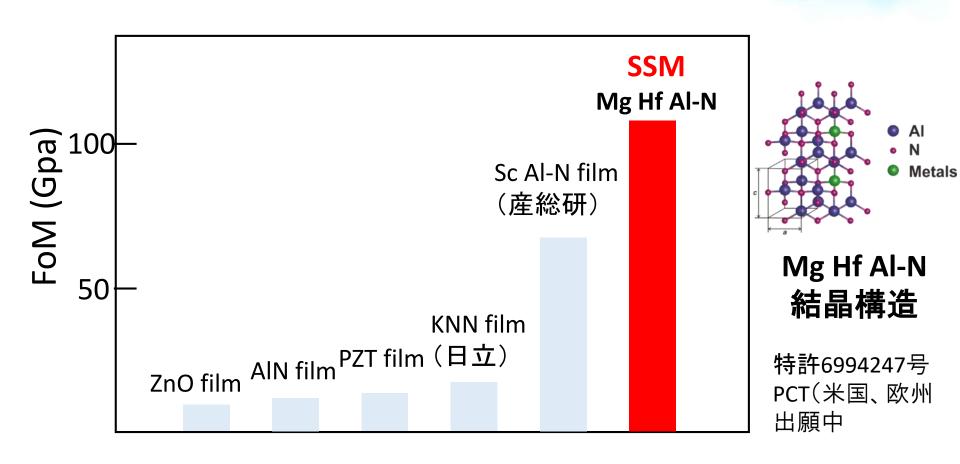
配線:引き回し必要

電池:爆発の危険性あり

超省エネでIoTの幅広い普及を促すことが可能

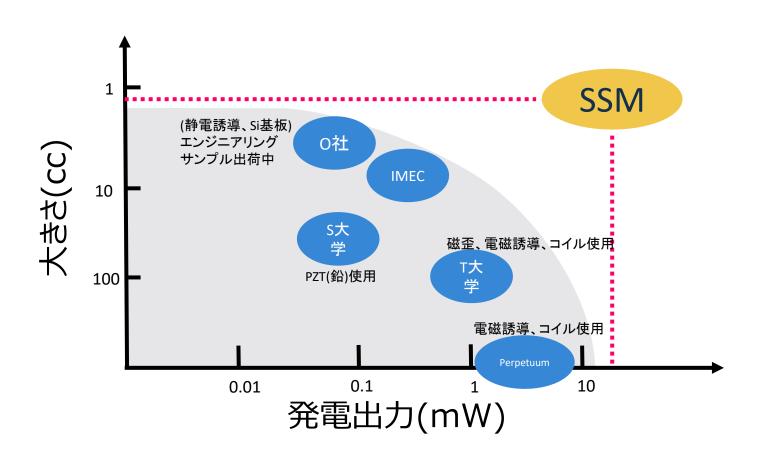
適用例

劣化診断や状況把握用センサの電源として

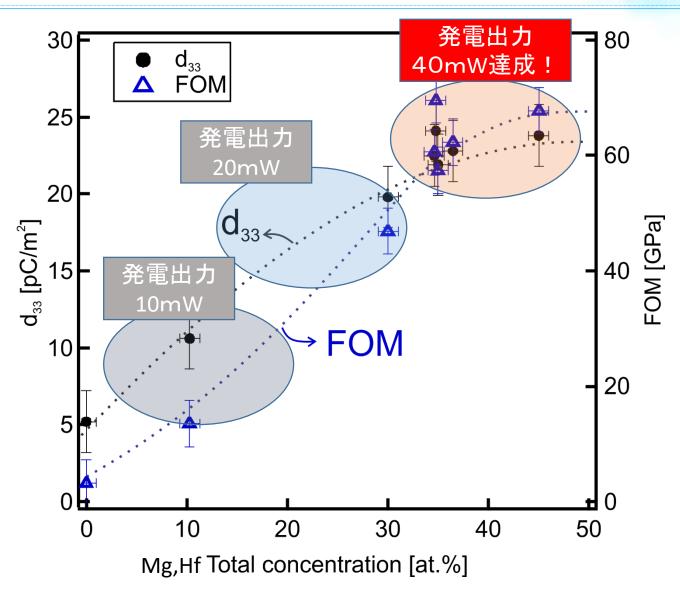

・人の立ち入り難い場所

・爆発の危険がある箇所

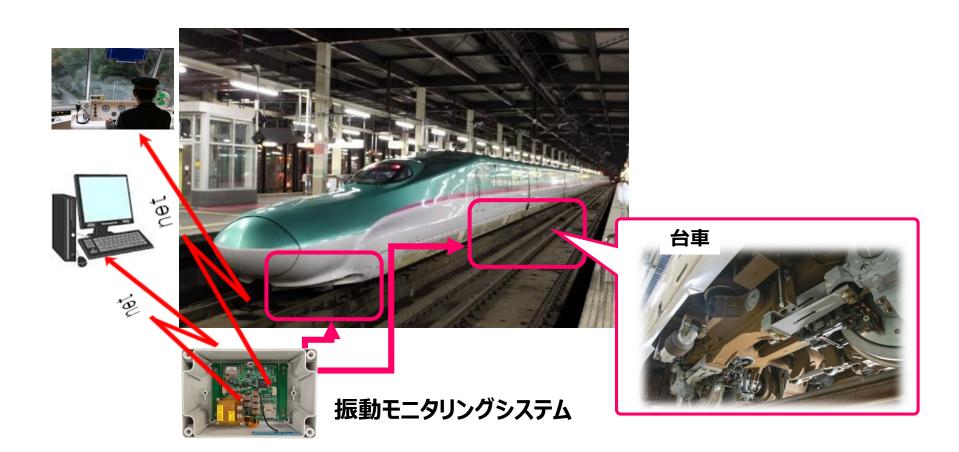
・交換が難しい場所


根幹となる独創技術(MgHfAl-N) SSM Confidential

圧電体の能力を示すFoM (Figure of merit) の 世界最高値を達成

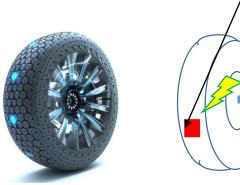


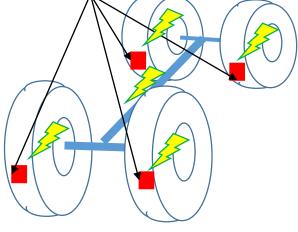
発電出力、大きさ、環境性などから自動車、プラントなどに使用できるものは 世界中でSSMのみ


SSMの優位性

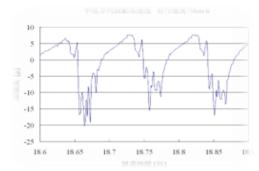
注力事業

台車モニタリングシステムへの適用

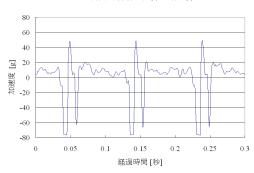




注力事業


安全運転、自動運転のためのインタイヤモニタリングシステム

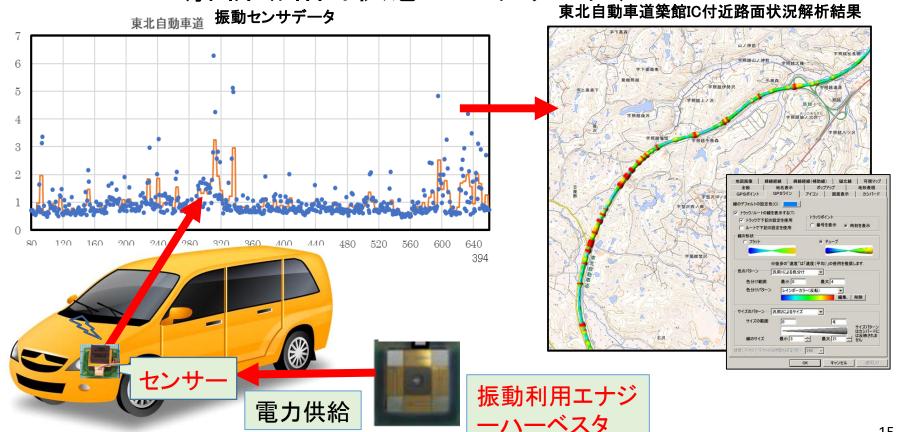
In-tire wireless monitoring system



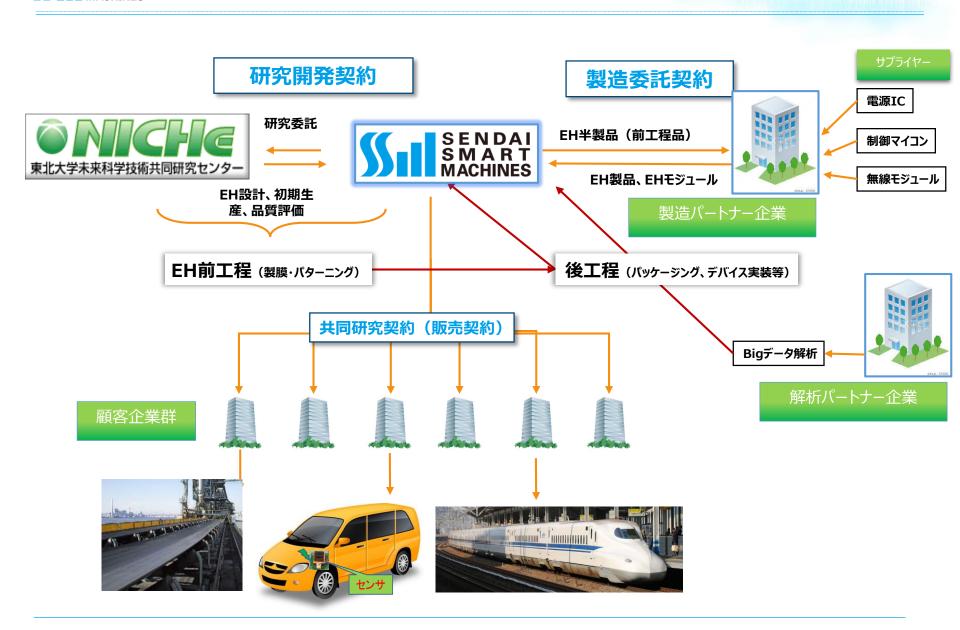
Acceleration of rotation direction (70km/h)

Acceleration of radial direction (70km/h)

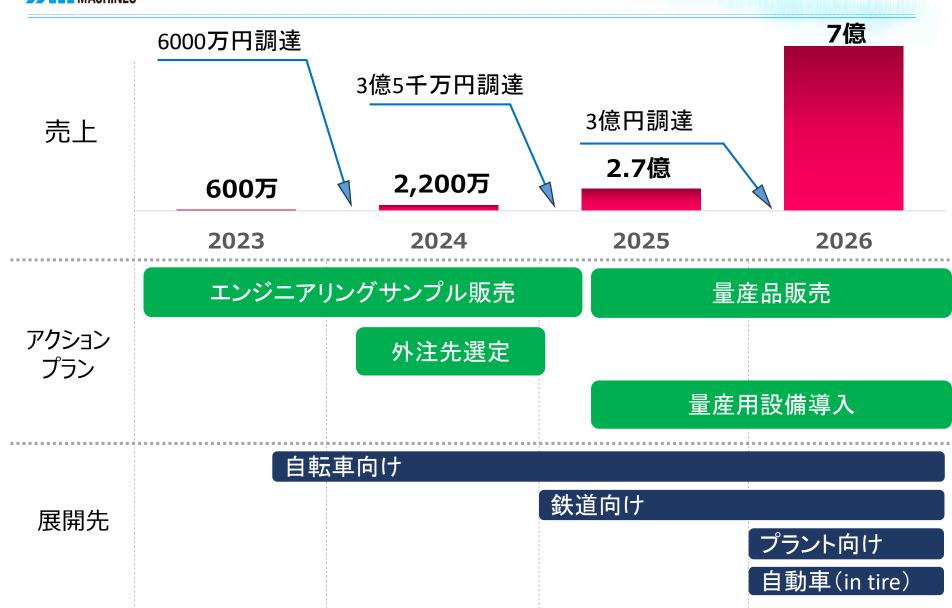
回転方向振動加速度 走行速度70km/h



注力事業


自動車バネ下に設置する道路モニタリングシステムを試作。東北NEXCOに納入。道路表面 の荒れ、穴、突起物などのモニタリングマッピングを可能とした。

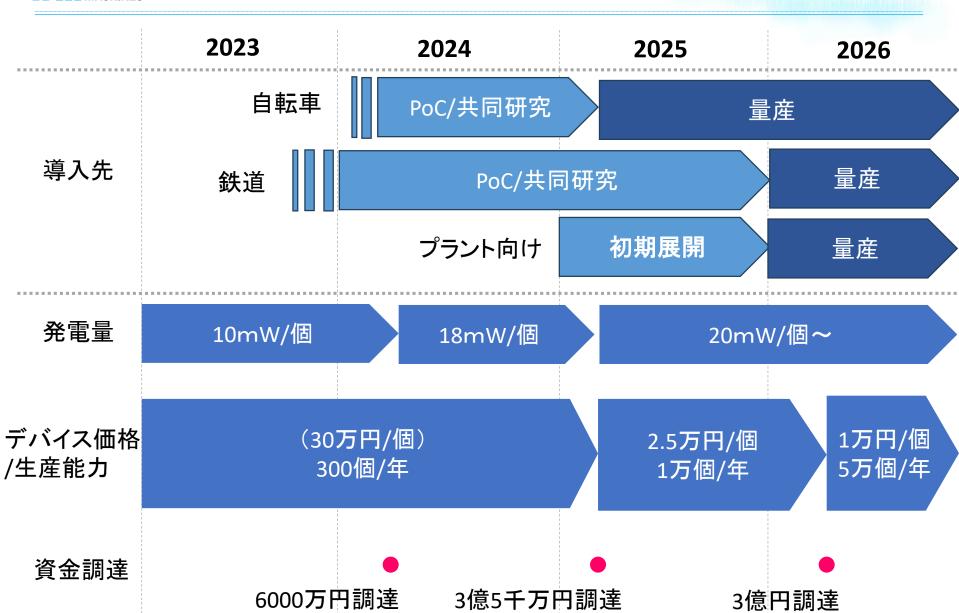
【実施例】 東北自動車道におけるビッグデータ振動 解析(路面状態モニタリング)


ビジネスモデル

SSM Confidential

導入計画

SSM Confidential



展開先 状況

展開	対象ユーザー	用途	状況 (2023.12)
自転車	SHIMANO	ワイヤレスギア用の オンサイトエナジー	サンプル購入・PoCに向けた 協議中
鉄道	JR東海	新幹線台車/ディーゼル エンジンモニタリング	PoC実施中(1次確認完了)
プラント	JFEスチール	ベルトコンベヤ監視センサ用	PoC実施済 仕様/価格先方より提示
自動車	京セラ/横浜ゴム	自動運転(姿勢制御)向け タイヤ内センサ駆動用	PoCに向けた実務者協議前

導入スケジュール

SSM Confidential

資金調達使途

<u>2024.03増資</u>

運転資金(人件費、原材料費) 4,500万円 設備投資 1,500万円

2025.03増資

デバイス開発費 2,000万円 人件費(デバイス設計/システム開発人員) 1,000万円 設備投資 32,000万円

2026.03増資

人件費(デバイス開発人員/バックヤード人材) 10,000万円 設備投資 20,000万円

収支計画

(千円)

										(11)			
		2023		2024		2025		2026		2027		2028	
売上高	売上合計 (EH生産数量)	6,000	(30)	22,000	(270)	281,000	(10600)	710,000	(52600)	1,050,000	(136400)	2,610,000	(164000)
製造原価	変動費	325		2,926		114,873		467,832		324,574		390,250	
	固定費	17,000		22,000		82,732		112,016		120,352		120,352	
	(うち人件費)	(0)		(5000)		(31732)		(38016)		(44352)		(44352)	
	(うち減価償却費)	(15000)		(15000)		(47000)		(67000)		(67000)		(67000)	
売上高総利益		-11,325		-7,126		22,195		47,652		380,074		1,523,198	
販管費	人件費	20,260		32,400		56,020		65,821		132,112		138,718	
	法定福利費	3,242		5,184		8,963		10,531		21,138		22,195	
	研究開発費	2,000		8,000		8,400		8,820		9,261		11,113	
	賃貸料	5,952		5,952		7,142		8,571		17,142		34,284	
	旅費交通費	2,800		2,800		4,900		5,600		9,100		26,000	
	光熱費	2,976		2,976		3,571		4,285		8,571		17,142	
	その他経費	690		2,580		22,980		59,577		116,276		392,900	
営業利益		-49,245		-67,018		-89,782		-115,554		66,474		880,846	
営業外収入		0		0		0		0		0		0	
営業外費用		0		0		0		0		0		0	
経常利益		-49,245		-67,018		-89,782		-115,554		66,474		880,846	